SUMMARY REPORT 129 BARRACUDA DRIVE (FORMERLY 916 BARRACUDA DRIVE) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

JUNE 2021

SUMMARY REPORT 129 BARRACUDA DRIVE (FORMERLY 916 BARRACUDA DRIVE) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016 CTO WE52 JUNE 2021

Summary Report 129 Barracuda Drive (Formerly 916 Barracuda Drive) Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort June 2021

Table of Contents

1.0	INTRODUCTION	. 1
1.1 1.2	BACKGROUND INFORMATION UST REMOVAL AND ASSESSMENT PROCESS	.1 .2
2.0	SAMPLING ACTIVITIES AND RESULTS	. 3
2.1	UST REMOVAL AND SOIL SAMPLING	.3
2.2	SOIL ANALYTICAL RESULTS	.4
2.3	GROUNDWATER SAMPLING	.4
2.4	GROUNDWATER ANALYTICAL RESULTS	.5
3.0	PROPERTY STATUS	. 5
4.0	REFERENCES	. 5

Tables

Table 1	Laboratory Analytical Results - Soil
Table 2	Laboratory Analytical Results - Groundwater

Appendices

- Appendix A Multi-Media Selection Process for LBMH
- Appendix B UST Assessment Report
- Appendix C Laboratory Analytical Report Groundwater
- Appendix D Regulatory Correspondence

List of Acronyms

bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
СТО	Contract Task Order
COPC	constituents of potential concern
ft	feet
IDIQ	Indefinite Delivery, Indefinite Quantity
IGWA	Initial Groundwater Assessment
JV	Joint Venture
LBMH	Laurel Bay Military Housing
MCAS	Marine Corps Air Station
NAVFAC Mid-Lant	Naval Facilities Engineering Command Mid-Atlantic
NFA	No Further Action
PAH	polynuclear aromatic hydrocarbon
QAPP	Quality Assurance Program Plan
RBSL	risk-based screening level
SCDHEC	South Carolina Department of Health and Environmental Control
Site	LBMH area at MCAS Beaufort, South Carolina
UST	underground storage tank
VISL	vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 129 Barracuda Drive (Formerly 916 Barracuda Drive). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan (QAPP) for the Underground Storage Tank Management Division, Revision 3.1* (SCDHEC, 2016) and the *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service,* (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Division (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 129 Barracuda Drive (Formerly 916 Barracuda Drive). Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 916 Barracuda Drive* (MCAS Beaufort, 2014). The UST Assessment Report is provided in Appendix B. Details regarding the IGWA sampling activities at this site are provided in the *Initial Groundwater Investigation Report – November and December 2015* (Resolution Consultants, 2016). The laboratory report that includes the pertinent IGWA analytical results for this site is presented in Appendix C.

2.1 UST Removal and Soil Sampling

On June 17, 2013, a single 280 gallon heating oil UST was removed from underneath the asphalt driveway at 129 Barracuda Drive (Formerly 916 Barracuda Drive). The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). The UST was removed, cleaned, and shipped offsite for recycling. There was no visual evidence (i.e.,

staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Report (Appendix B), the depth to the base of the UST was 5'5" bgs and a single soil sample was collected from that depth. The sample was collected from the fill port side of the former UST to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of the excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data report is included in the UST Assessment Report presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 129 Barracuda Drive (Formerly 916 Barracuda Drive) were greater than the SCDHEC RBSLs, which indicated further investigation was required. In a letter dated July 1, 2015, SCDHEC requested an IGWA for 129 Barracuda Drive (Formerly 916 Barracuda Drive) to determine if the groundwater was impacted by petroleum COPCs. SCDHEC's request letter is provided in Appendix D.

2.3 Groundwater Sampling

On November 30, 2015, a temporary monitoring well was installed at 129 Barracuda Drive (Formerly 916 Barracuda Drive), in accordance with the South Carolina Well Standards and Regulations (R.61-71.H-I, updated June 24, 2016). In order to provide data that can be used to determine whether COPCs are migrating to underlying groundwater, the monitoring well was placed in the same general location as the former heating oil UST. The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). Further details are provided in the *Initial Groundwater Investigation Report – November and December 2015* (Resolution Consultants, 2016).

The sampling strategy for this phase of the investigation required a one-time sampling event of the temporarily installed monitoring well. Following well installation and development, groundwater samples were collected using low-flow methods and shipped to an offsite laboratory for analysis of the petroleum COPCs. Upon completion of groundwater sampling, the temporary well was abandoned in accordance with the South Carolina Well Standards and Regulations R.61-71 (SCDHEC, 2016). Field forms are provided in the *Initial Groundwater Investigation Report – November and December 2015* (Resolution Consultants, 2016).

2.4 Groundwater Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 2. A copy of the laboratory analytical data report is included in Appendix C.

The groundwater results collected from 129 Barracuda Drive (Formerly 916 Barracuda Drive) were less than the SCDHEC RBSLs and the site specific groundwater VISLs (Table 2), which indicated that the groundwater was not impacted by COPCs associated with the former UST at concentrations that present a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Based on the analytical results for groundwater, SCDHEC made the determination that NFA was required for 129 Barracuda Drive (Formerly 916 Barracuda Drive). This NFA determination was obtained in a letter dated June 8, 2016. SCDHEC's NFA letter is provided in Appendix D.

4.0 **REFERENCES**

- Marine Corps Air Station Beaufort, 2014. *South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report – 916 Barracuda Drive, Laurel Bay Military Housing Area*, March 2014.
- Resolution Consultants, 2016. *Initial Groundwater Investigation Report November and December 2015 for Laurel Bay Military Housing Area, Multiple Properties, Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina*, April 2016.

- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations,* March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, March 2018.
- South Carolina Department of Health and Environmental Control Bureau of Water, 2016. *R.61-71, Well Standards*, June 2016.

Tables

Table 1 Laboratory Analytical Results - Soil 129 Barracuda Drive (Formerly 916 Barracuda Drive) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	SCDHEC RBSLs ⁽¹⁾	Results Sample Collected 06/17/13					
Volatile Organic Compounds Analyze	/olatile Organic Compounds Analyzed by EPA Method 8260B (mg/kg)						
Benzene	0.003	ND					
Ethylbenzene	1.15	ND					
Naphthalene	0.036	ND					
Toluene	0.627	ND					
Xylenes, Total	13.01	ND					
Semivolatile Organic Compounds Ana	alyzed by EPA Method 8270D (mg/kg)						
Benzo(a)anthracene	0.66	1.34					
Benzo(b)fluoranthene	0.66	0.903					
Benzo(k)fluoranthene	0.66	0.821					
Chrysene	0.66	1.98					
Dibenz(a,h)anthracene	0.66	0.137					

Notes:

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.0 and 3.1 (SCDHEC, May 2015 and SCDHEC, February 2016) and the Underground Storage Tank Assessment Guidelines (SCDHEC, February 2006).

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligrams per kilogram

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The soil laboratory report is provided in Appendix B.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

Table 2 Laboratory Analytical Results - Groundwater 129 Barracuda Drive (Formerly 916 Barracuda Drive) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	SCDHEC RBSLs (1)	Site-Specific Groundwater VISLs (µg/L) ⁽²⁾	Results Sample Collected 11/30/15	
Volatile Organic Compounds Analyzed	l by EPA Method 8260B (µg	/L)		
Benzene	5	16.24	ND	
Ethylbenzene	700	45.95	ND	
Naphthalene	25	29.33	ND	
Toluene	1000	105,445	ND	
Xylenes, Total	10,000	2,133	ND	
Semivolatile Organic Compounds Ana	lyzed by EPA Method 8270) (µg/L)		
Benzo(a)anthracene	10	NA	ND	
Benzo(b)fluoranthene	10	NA	ND	
Benzo(k)fluoranthene	10	NA	ND	
Chrysene	10	NA	ND	
Dibenz(a,h)anthracene	10	NA	ND	

Notes:

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.1 (SCDHEC, February 2016).

⁽²⁾ Site-specific groundwater VISLs were calculated using the EPA JE Model Spreadsheets (Version 3.1, February 2004) and conservative modeling inputs representative of a small single-story house with an 8 foot ceiling. Site-specific groundwater VISLs were developed based on a target risk level of 1x10⁻⁶, a target hazard quotient of 1 (per target organ), and a default residential exposure scenario, assuming exposure for 24 hours/day, 350 days/year, for 26 years. Modeling was performed for a range of depths to groundwater for application as appropriate in different areas of the Laurel Bay Military Housing Area. The most conservative levels are presented for comparison. Refer to Appendix H of the Uniform Federal Policy Sampling Analysis and Sampling Plan for Vapor Media, Revision 4 (Resolution Consultants, April 2017) for additional information.

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL and/or the Site-Specific Groundwater VISL.

EPA - United States Environmental Protection Agency

JE - Johnson & Ettinger

NA - Not Applicable

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The groundwater laboratory report is provided in Appendix C.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

µg/L - micrograms per liter

VISL - Vapor Intrusion Screening Level

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Report

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Date Received		
	State Use Only	_
	MAP 1 9 2014	

SC DHEC - Bureau of Land & Waste Management Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

MCAS Beaufort, Co	mmanding Officer Attn: NH	REAO (Craig Ehde)					
Owner Name (Corporation, Individual, Public Agency, Other)							
P.O. Box 55001							
Mailing Address							
Beaufort,	South Carolina	29904-5001					
City	State	Zip Code					
843	228-7317	Craig Ehde					
Area Code	Telephone Number	Contact Person					
A. A							

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. # Laurel Bay Milita Facility Name or Company	<u>ry Housing Area, Marine Corps Air Station, Beaufort, SC</u> Site Identifier
916 Barracuda St Street Address or State Ro	reet, Laurel Bay Military Housing Area ad(asapplicable)
Beaufort,	Beaufort
City	County

Attachment 2

III. INSURANCE INFORMATION

Insurance Statement

The petroleum release reported to DHEC on ______at Permit ID Number _____ may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.

Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES____ NO____ (check one)

If you answered **YES** to the above question, please complete the following information:

My policy provider is: ______ The policy deductible is: ______ The policy limit is:

If you have this type of insurance, please include a copy of the policy with this report.

IV. REQUEST FOR SUPERB FUNDING

I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)

V. CERTIFICATION (To be signed by the UST owner)

I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Name (Type or print.)

Signature

To be completed by Notary Public:

Sworn before me this _____ day of _____, 20____

(Name)

Notary Public for the state of ______. Please affix State seal if you are commissioned outside South Carolina

VI. UST INFORMATION

		916Barracuda
A.	Product(ex. Gas, Kerosene)	Heating oil
B.	Capacity(ex. 1k, 2k)	280 gal
C.	Age	Late 1950s
D.	Construction Material(ex. Steel, FRP)	Steel
E.	Month/Year of Last Use	Mid 1980s
F.	Depth (ft.) To Base of Tank	515"
G.	Spill Prevention Equipment Y/N	No
H.	Overfill Prevention Equipment Y/N	No
1.	Method of Closure Removed/Filled	Removed
I J	Date Tanks Removed/Filled	6/17/2013
K.	Visible Corrosion or Pitting Y/N	Yes
L.	Visible Holes Y/N	Yes

M. Method of disposal for any USTs removed from the ground (attach disposal manifests) <u>UST 916Barracuda was removed from the ground and disposed at a</u> Subtitle "D" landfill. See Attachment "A".

Method of disposal for any liquid petroleum, sludges, or wastewaters removed from the USTs (attach disposal manifests)
 UST 916Barracuda had been previously filled with sand by others.

O. If any corrosion, pitting, or holes were observed, describe the location and extent for each UST Corrosion and pitting were found throughout the tank.

VII. PIPING INFORMATION

		916Barracuda	
		Steel	
A.	Construction Material(ex. Steel, FRP)	& Copper	
B.	Distance from UST to Dispenser	N/A	
C.	Number of Dispensers	N/A	
D.	Type of System Pressure or Suction	Suction	
E.	Was Piping Removed from the Ground? Y/N	No	
F.	Visible Corrosion or Pitting Y/N	Yes	
G.	Visible Holes Y/N	No	_
H.	Age	Late 1950s	
I.	If any corrosion, pitting, or holes were observed.	describe the location and extent for each pipi	ng run.

Corrosion and pitting were found on the surface of the steel vent pipe. Copper supply and return lines were sound.

VIII. BRIEF SITE DESCRIPTION AND HISTORY

The USTs at the residences are constructed of single wall steel and formerly contained fuel oil for heating. These USTs were installed in the late 1950s and last used in the mid 1980s.

	Yes	No	Unk
 A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map. 		X	
 B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells? If yes, indicate location on site map and describe the odor (strong, mild, etc.) 		x	
C. Was water present in the UST excavation, soil borings, or trenches? If yes, how far below land surface (indicate location and depth)?		x	
 D. Did contaminated soils remain stockpiled on site after closure? If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal: 		X	
E. Was a petroleum sheen or free product detected on any excavation or boring waters?		x	
If yes, indicate location and thickness.			

IX. SITE CONDITIONS

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

Β.

Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA #
916Bar- racuda	Excav at fill end	Soil	Sandy	5'5"	6/17/13 1400 hrs	P. Shaw	A 12.
						1	
							1-01
				[]			1
8			1	1		1	
9							-
10			1 2				
11							
12			1	1			
13							
14							
15							
16							
17							
18							
19							
20							

* = Depth Below the Surrounding Land Surface

XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280 and SC DHEC Assessment Guidelines. Sample containers were prepared by the testing laboratory. The grab method was utilized to fill the sample containers leaving as little head space as possible and immediately capped. Soil samples were extracted from area below tank. The samples were marked, logged, and immediately placed in a sample cooler packed with ice to maintain an approximate temperature of 4 degrees Centigrade. Tools were thoroughly cleaned and decontaminated with the seven step decon process after each use. The samples remained in custody of SBG-EEG, Inc. until they were transferred to Test America Incorporated for analysis as documented in the Chain of Custody Record.

XII. RECEPTORS

		Yes	No
A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?		X
	If yes, indicate type of receptor, distance, and direction on site map.		
B.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		x
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		х
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination? *Sewer, water, electric	*X ity,	
	cable, fiber optic & ge If yes, indicate the type of utility, distance, and direction on the site map.	othe	rmal
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		X
	If yes, indicate the area of contaminated soil on the site map.		

XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 916Barracuda.

Picture 2: UST 916Barracuda excavation.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

CoC UST	916Barracuda		
Benzene	ND		
Toluene	ND		
Ethylbenzene	ND		
Xylenes	ND		
Naphthalene	ND		
Benzo (a) anthracene	1.34 mg/kg		
Benzo (b) fluoranthene	0.903 mg/kg		
Benzo (k) fluoranthene	0.821 mg/kg		
Chrysene	1.98 mg/kg		1
Dibenz (a, h) anthracene	0.137 mg/kg		
TPH (EPA 3550)			
CoC			
Benzene			
Toluene			
Ethylbenzene			
Xylenes			
Naphthalene			
Benzo (a) anthracene			
Benzo (b) fluoranthene			
Benzo (k) fluoranthene			
Chrysene			
Dibenz (a, h) anthracene			
TPH (EPA 3550)			

SUMMARY OF ANALYSIS RESULTS (cont'd) Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	W-1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700			1	
Xylenes	10,000				1
Total BTEX	N/A				
МТВЕ	40				1
Naphthalene	25				
Benzo (a) anthracene	10		1		
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10			(-
Dibenz (a, h) anthracene	10	1			
EDB	.05		-		
1,2-DCA	5				
Lead	Site specific	212			

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-29694-1 Client Project/Site: Laurel Bay Housing

For:

Small Business Group Inc. 10179 Highway 78 Ladson, South Carolina 29456

Attn: Tom McElwee

Kuth Hay

Authorized for release by: 7/10/2013 2:26:33 PM

Ken Hayes, Project Manager I ken.hayes@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS Review your project results through Total Access Have a Question? Have a Question?

Visit us at:

www.testamericainc.com

2

5 6 7

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	8
QC Association	13
Chronicle	14
Method Summary	15
Certification Summary	16
Chain of Custody	17
Receipt Checklists	19

TestAmerica Job ID: 490-29694-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-29694-1	916 Barracuda	Solid	06/17/13 14:00	06/26/13 08:15
490-29694-2	1204 Cardinal	Solid	06/18/13 15:15	06/26/13 08:15

TestAmerica Nashville

Job ID: 490-29694-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-29694-1

Comments

No additional comments.

Receipt

The samples were received on 6/26/2013 8:15 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.8° C.

GC/MS VOA

Method(s) 8260B: Internal standard responses were outside of acceptance limits for the following sample(s): (490-29836-4 MS), (490-29836-4 MSD), SS 20 - 12 (490-29836-4). The sample(s) shows evidence of matrix interference.

Method(s) 8260B: Surrogate recovery for the following sample(s) was outside control limits: SS 20 - 12 (490-29836-4) and (490-29836-4 MS& MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No other analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 8270D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 89634 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

TestAmerica Job ID: 490-29694-1

5

Qualifiers

quamero	
GC/MS VOA	
Qualifier	Qualifier Description
x	Surrogate is outside control limits
GC/MS Semi	/OA
Qualifier	Qualifier Description
F	MS or MSD exceeds the control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

Client Sample ID: 916 Barracuda

Lab Sample ID: 490-29694-1 Matrix: Solid

Percent Solids: 76.2

5 6

Method: 8260B - Volatile Organic Compounds (GC/MS)

Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	0.00243	0.000815	mg/Kg	\$2	06/27/13 10:49	06/28/13 20:55	1
	0.00243	0.000815	mg/Kg	-	06/27/13 10:49	06/28/13 20:55	1
	0.00608	0.00207	mg/Kg	a	06/27/13 10:49	06/28/13 20:55	1
	0.00243	0.000900	mg/Kg	12	06/27/13 10:49	06/28/13 20:55	1
	0.00608	0.000815	mg/Kg	a	06/27/13 10:49	06/28/13 20:55	1
Qualifier	Limits				Prepared	Analyzed	Dil Fac
	70 - 130				06/27/13 10:49	06/28/13 20:55	1
	70 - 130				06/27/13 10:49	06/28/13 20:55	1
	70 - 130				06/27/13 10:49	06/28/13 20:55	1
	70 - 130				06/27/13 10:49	06/28/13 20:55	1
	Qualifier Qualifier	Qualifier RL 0.00243 0.00243 0.00243 0.00608 0.00243 0.00608 Qualifier Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Qualifier RL MDL 0.00243 0.000815 0.000815 0.00243 0.000815 0.00207 0.00243 0.000900 0.0020815 0.00608 0.000900 0.00608 0.000815 Qualifier Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Qualifier RL MDL Unit 0.00243 0.000815 mg/Kg 0.00243 0.000815 mg/Kg 0.00608 0.00207 mg/Kg 0.00243 0.000900 mg/Kg 0.00608 0.000815 mg/K	Qualifier RL MDL Unit D 0.00243 0.000815 mg/Kg III 0.00243 0.000815 mg/Kg IIII 0.00243 0.000815 mg/Kg IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Qualifier RL MDL Unit D Prepared 0.00243 0.000815 mg/Kg m	Qualifier RL MDL Unit D Prepared Analyzed 0.00243 0.000815 mg/Kg 06/27/13 10:49 06/28/13 20:55 06/27/13 10:49 06/28/13 20:55 0.00243 0.000815 mg/Kg 06/27/13 10:49 06/28/13 20:55 06/27/13 10:49 06/28/13 20:55 0.00243 0.000900 mg/Kg 06/27/13 10:49 06/28/13 20:55 06/28/13 20:55 0.00243 0.000900 mg/Kg 06/27/13 10:49 06/28/13 20:55 0.00608 0.000815 mg/Kg 06/27/13 10:49 06/28/13 20:55 Qualifier Limits mg/Kg 06/27/13 10:49 06/28/13 20:55 70 - 130 70 - 130 06/27/13 10:49 06/28/13 20:55 70 - 130 06/27/13 10:49 06/28/13 20:55 70 - 130 06/27/13 10:49 06/28/13 20:55 70 - 130 06/27/13 10:49 06/28/13 20:55 70 - 130 06/27/13 10:49 06/28/13 20:55 70 - 130 06/27/13 10:49 06/28/13 20:55 70 - 130 06/27/13 10:49 06/

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0872	0.0130	mg/Kg	12	06/28/13 09:53	06/29/13 20:53	1
Acenaphthylene	ND		0.0872	0.0117	mg/Kg	α	06/28/13 09:53	06/29/13 20:53	1
Anthracene	ND		0.0872	0.0117	mg/Kg	¤	06/28/13 09:53	06/29/13 20:53	1
Benzo[a]anthracene	1.34		0.0872	0.0195	mg/Kg	-	06/28/13 09:53	06/29/13 20:53	1
Benzo[a]pyrene	0.712		0.0872	0.0156	mg/Kg	12	06/28/13 09:53	06/29/13 20:53	1
Benzo[b]fluoranthene	0.903		0.0872	0.0156	mg/Kg	¤	06/28/13 09:53	06/29/13 20:53	1
Benzo[g,h,i]perylene	0.313		0.0872	0.0117	mg/Kg	a	06/28/13 09:53	06/29/13 20:53	1
Benzo[k]fluoranthene	0.821		0.0872	0.0182	mg/Kg	-12	06/28/13 09:53	06/29/13 20:53	1
1-Methylnaphthalene	ND		0.0872	0.0182	mg/Kg	n	06/28/13 09:53	06/29/13 20:53	1
Pyrene	1.63		0.0872	0.0156	mg/Kg	-12	06/28/13 09:53	06/29/13 20:53	1
Phenanthrene	ND		0.0872	0.0117	mg/Kg	X	06/28/13 09:53	06/29/13 20:53	1
Chrysene	1.98		0.0872	0.0117	mg/Kg	a	06/28/13 09:53	06/29/13 20:53	1
Dibenz(a,h)anthracene	0.137		0.0872	0.00911	mg/Kg	n	06/28/13 09:53	06/29/13 20:53	1
Fluoranthene	1.50		0.0872	0.0117	mg/Kg	12	06/28/13 09:53	06/29/13 20:53	1
Fluorene	ND		0.0872	0.0156	mg/Kg	12	06/28/13 09:53	06/29/13 20:53	1
Indeno[1,2,3-cd]pyrene	0.301		0.0872	0.0130	mg/Kg	×	06/28/13 09:53	06/29/13 20:53	1
Naphthalene	ND		0.0872	0.0117	mg/Kg	**	06/28/13 09:53	06/29/13 20:53	1
2-Methylnaphthalene	ND		0.0872	0.0208	mg/Kg	n	06/28/13 09:53	06/29/13 20:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	34		29 - 120				06/28/13 09:53	06/29/13 20:53	1
Terphenyl-d14 (Surr)	40		13 - 120				06/28/13 09:53	06/29/13 20:53	1
Nitrobenzene-d5 (Surr)	36		27 - 120				06/28/13 09:53	06/29/13 20:53	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	76		0.10	0.10	%			06/27/13 13:14	1

Client Sample ID: 1204 Cardinal

Date Collected: 06/18/13 15:15 Date Received: 06/26/13 08:15

Lab Sample ID: 490-29694-2

Matrix: Solid Percent Solids: 93.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00224	0.000751	mg/Kg	α	06/27/13 10:49	06/28/13 21:26	1
Ethylbenzene	ND		0.00224	0.000751	mg/Kg	12	06/27/13 10:49	06/28/13 21:26	1
Naphthalene	ND		0.00561	0.00191	mg/Kg	¤	06/27/13 10:49	06/28/13 21:26	1
Toluene	ND		0.00224	0.000830	mg/Kg	n	06/27/13 10:49	06/28/13 21:26	1
Xylenes, Total	ND		0.00561	0.000751	mg/Kg	¤	06/27/13 10:49	06/28/13 21:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		70 - 130				06/27/13 10:49	06/28/13 21:26	1
4-Bromofluorobenzene (Surr)	105		70 - 130				06/27/13 10:49	06/28/13 21:26	1
Dibromofluoromethane (Surr)	99		70 - 130				06/27/13 10:49	06/28/13 21:26	1
Toluene-d8 (Surr)	101		70 - 130				06/27/13 10:49	06/28/13 21:26	1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0717	0.0107	mg/Kg	2	06/28/13 09:53	06/29/13 22:05	1
Acenaphthylene	ND		0.0717	0.00963	mg/Kg	a	06/28/13 09:53	06/29/13 22:05	1
Anthracene	ND		0.0717	0.00963	mg/Kg	-	06/28/13 09:53	06/29/13 22:05	1
Benzo[a]anthracene	0.0990		0.0717	0.0161	mg/Kg	ü	06/28/13 09:53	06/29/13 22:05	1
Benzo[a]pyrene	0.0388	J	0.0717	0.0128	mg/Kg	12	06/28/13 09:53	06/29/13 22:05	1
Benzo[b]fluoranthene	0.104		0.0717	0.0128	mg/Kg	¤	06/28/13 09:53	06/29/13 22:05	1
Benzo[g,h,i]perylene	0.0705	J	0.0717	0.00963	mg/Kg	a	06/28/13 09:53	06/29/13 22:05	1
Benzo[k]fluoranthene	0.0519	J	0.0717	0.0150	mg/Kg	n	06/28/13 09:53	06/29/13 22:05	1
1-Methylnaphthalene	ND		0.0717	0.0150	mg/Kg	11	06/28/13 09:53	06/29/13 22:05	1
Pyrene	0.110		0.0717	0.0128	mg/Kg	12	06/28/13 09:53	06/29/13 22:05	1
Phenanthrene	ND		0.0717	0.00963	mg/Kg	a	06/28/13 09:53	06/29/13 22:05	1
Chrysene	0.0744		0.0717	0.00963	mg/Kg	a	06/28/13 09:53	06/29/13 22:05	1
Dibenz(a,h)anthracene	ND		0.0717	0.00749	mg/Kg	12	06/28/13 09:53	06/29/13 22:05	1
Fluoranthene	0.0982		0.0717	0.00963	mg/Kg	11	06/28/13 09:53	06/29/13 22:05	1
Fluorene	ND		0.0717	0.0128	mg/Kg	10	06/28/13 09:53	06/29/13 22:05	1
Indeno[1,2,3-cd]pyrene	0.0769		0.0717	0.0107	mg/Kg	a	06/28/13 09:53	06/29/13 22:05	1
Naphthalene	ND		0.0717	0.00963	mg/Kg	-22	06/28/13 09:53	06/29/13 22:05	1
2-Methylnaphthalene	ND		0.0717	0.0171	mg/Kg	¤	06/28/13 09:53	06/29/13 22:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	46		29 - 120				06/28/13 09:53	06/29/13 22:05	1
Terphenyl-d14 (Surr)	56		13 - 120				06/28/13 09:53	06/29/13 22:05	1
Nitrobenzene-d5 (Surr)	41		27 - 120				06/28/13 09:53	06/29/13 22:05	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	93		0.10	0.10	%			06/27/13 13:14	1

TestAmerica Job ID: 490-29694-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-89644/6 Matrix: Solid Analysis Batch: 89644

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.000670	mg/Kg			06/28/13 13:18	1
Ethylbenzene	ND		0.00200	0.000670	mg/Kg			06/28/13 13:18	1
Naphthalene	ND		0.00500	0.00170	mg/Kg			06/28/13 13:18	1
Toluene	ND		0.00200	0.000740	mg/Kg			06/28/13 13:18	1
Xylenes, Total	ND		0.00500	0.000670	mg/Kg			06/28/13 13:18	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		70 - 130					06/28/13 13:18	1
4-Bromofluorobenzene (Surr)	101		70 - 130					06/28/13 13:18	1
Dibromofluoromethane (Surr)	99		70 - 130					06/28/13 13:18	1
Toluene-d8 (Surr)	100		70 - 130					06/28/13 13:18	1

Lab Sample ID: LCS 490-89644/3 Matrix: Solid Analysis Batch: 89644

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
0.0500	0.05133		mg/Kg		103	75 - 127	
0.0500	0.05285		mg/Kg		106	80 - 134	
0.0500	0.05886		mg/Kg		118	69 - 150	
0.0500	0.05095		mg/Kg		102	80 - 132	
0.150	0.1578		mg/Kg		105	80 - 137	
	Spike Added 0.0500 0.0500 0.0500 0.0500 0.150	Spike LCS Added Result 0.0500 0.05133 0.0500 0.05285 0.0500 0.05886 0.0500 0.05095 0.150 0.1578	Spike LCS LCS Added Result Qualifier 0.0500 0.05133 0.0500 0.0500 0.05285 0.0500 0.0500 0.05886 0.05095 0.150 0.1578 0.1578	Spike LCS LCS Added Result Qualifier Unit 0.0500 0.05133 mg/Kg 0.0500 0.05285 mg/Kg 0.0500 0.05886 mg/Kg 0.0500 0.05095 mg/Kg 0.0500 0.05095 mg/Kg 0.150 0.1578 mg/Kg	Spike LCS LCS Added Result Qualifier Unit D 0.0500 0.05133 mg/Kg 0.0500 0.05285 mg/Kg 0.0500 0.05886 mg/Kg 0.0500 0.05095 mg/Kg 0.1500 0.1578 mg/Kg	Spike LCS LCS Added Result Qualifier Unit D %Rec 0.0500 0.05133 mg/Kg 103 0.0500 0.05285 mg/Kg 106 0.0500 0.05886 mg/Kg 118 0.0500 0.05095 mg/Kg 102 0.1500 0.1578 mg/Kg 105	Spike LCS %Rec. Added Result Qualifier Unit D %Rec. 0.0500 0.05133 mg/Kg 103 75 - 127 0.0500 0.05285 mg/Kg 106 80 - 134 0.0500 0.05886 mg/Kg 118 69 - 150 0.0500 0.05095 mg/Kg 102 80 - 132 0.150 0.1578 mg/Kg 105 80 - 137

	LUS	LUS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130
Dibromofluoromethane (Surr)	102		70 - 130
Toluene-d8 (Surr)	100		70 - 130

Lab Sample ID: LCSD 490-89644/4 Matrix: Solid

Analysis Batch: 89644

		Spike	LCSD	LCSD				%Rec.		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene		0.0500	0.05240		mg/Kg		105	75 - 127	2	50
Ethylbenzene		0.0500	0.05391		mg/Kg		108	80 - 134	2	50
Naphthalene		0.0500	0.05746		mg/Kg		115	69 - 150	2	50
Toluene		0.0500	0.05201		mg/Kg		104	80 - 132	2	50
Xylenes, Total		0.150	0.1615		mg/Kg		108	80 - 137	2	50
	LCSD LCSD									

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		70 - 130
4-Bromofluorobenzene (Surr)	99		70 - 130
Dibromofluoromethane (Surr)	101		70 - 130
Toluene-d8 (Surr)	100		70 - 130

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

TestAmerica Nashville

Spike

Added

0.0588

0.0588

0.0588

0.0588

0.176

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing

Analyte

Benzene

Toluene

Ethylbenzene

Naphthalene

Xylenes, Total

TestAmerica Job ID: 490-29694-1

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

0.00242

0.00204 J

0.00283 J

0.00677

0.00740

Sample Sample Result Qualifier

Lab Sample ID: 490-29836-A-4-D MS
Matrix: Solid
Analysis Batch: 89644

					Prep Type: Total/NA Prep Batch: 89721
MS	MS				%Rec.
Result	Qualifier	Unit	D	%Rec	Limits
0.06905		mg/Kg	a	113	31 - 143
0.06627		mg/Kg	ŭ.	109	23 - 161
0.02836		mg/Kg	n	43	10 - 176
0.08413		mg/Kg	12	132	30 - 155
0.1922		mg/Kg	^{II}	105	25 - 162

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		70 - 130
4-Bromofluorobenzene (Surr)	157	x	70 - 130
Dibromofluoromethane (Surr)	100		70 - 130
Toluene-d8 (Surr)	113		70 - 130

Lab Sample ID: 490-29836-A-4-E MSD Matrix: Solid Analysis Batch: 89644

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analysis Batch: 89644									Prep	Batch:	89721
and the second second	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.00242		0.0567	0.07038		mg/Kg	ä	120	31 - 143	2	50
Ethylbenzene	0.00204	J	0.0567	0.06581		mg/Kg	n	113	23 - 161	1	50
Naphthalene	0.00283	J	0.0567	0.02875		mg/Kg	32	46	10 - 176	1	50
Toluene	0.00677		0.0567	0.08669		mg/Kg	n	141	30 - 155	3	50
Xylenes, Total	0.00740		0.170	0.1877		mg/Kg	n	106	25 - 162	2	50
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	97		70 - 130								
4-Bromofluorobenzene (Surr)	163	x	70 - 130								

70 - 130

70 - 130

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

102

112

Lab Sample ID: MB 490-89634/1-A							Client Sa	mple ID: Metho	d Blank
Matrix: Solid								Prep Type: T	otal/NA
Analysis Batch: 89957								Prep Batch	n: 89634
and the second second	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0670	0.0100	mg/Kg		06/28/13 09:53	06/29/13 18:55	1
Acenaphthylene	ND		0.0670	0.00900	mg/Kg		06/28/13 09:53	06/29/13 18:55	1
Anthracene	ND		0.0670	0.00900	mg/Kg		06/28/13 09:53	06/29/13 18:55	1
Benzo[a]anthracene	ND		0.0670	0.0150	mg/Kg		06/28/13 09:53	06/29/13 18:55	1
Benzo[a]pyrene	ND		0.0670	0.0120	mg/Kg		06/28/13 09:53	06/29/13 18:55	1
Benzo[b]fluoranthene	ND		0.0670	0.0120	mg/Kg		06/28/13 09:53	06/29/13 18:55	1
Benzo[g,h,i]perylene	ND		0.0670	0.00900	mg/Kg		06/28/13 09:53	06/29/13 18:55	1
Benzo[k]fluoranthene	ND		0.0670	0.0140	mg/Kg		06/28/13 09:53	06/29/13 18:55	1
1-Methylnaphthalene	ND		0.0670	0.0140	mg/Kg		06/28/13 09:53	06/29/13 18:55	1
Pyrene	ND		0.0670	0.0120	mg/Kg		06/28/13 09:53	06/29/13 18:55	1
Phenanthrene	ND		0.0670	0.00900	mg/Kg		06/28/13 09:53	06/29/13 18:55	1

TestAmerica Nashville

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

66

43

Lab Sample ID: MB 490-89634/1-A Matrix: Solid

Analysis Batch: 89957								Prep Batch:
and a second second	MB	MB						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
Chrysene	ND		0.0670	0.00900	mg/Kg		06/28/13 09:53	06/29/13 18:55
Dibenz(a,h)anthracene	ND		0.0670	0.00700	mg/Kg		06/28/13 09:53	06/29/13 18:55
Fluoranthene	ND		0.0670	0.00900	mg/Kg		06/28/13 09:53	06/29/13 18:55
Fluorene	ND		0.0670	0.0120	mg/Kg		06/28/13 09:53	06/29/13 18:55
Indeno[1,2,3-cd]pyrene	ND		0.0670	0.0100	mg/Kg		06/28/13 09:53	06/29/13 18:55
Naphthalene	ND		0.0670	0.00900	mg/Kg		06/28/13 09:53	06/29/13 18:55
2-Methylnaphthalene	ND		0.0670	0.0160	mg/Kg		06/28/13 09:53	06/29/13 18:55
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed
2-Fluorobiphenyl (Surr)	49		29 - 120				06/28/13 09:53	06/29/13 18:55

13 - 120

27 - 120

Lab Sample ID: LCS 490-89634/2-A Matrix: Solid Analysis Batch: 80057

Terphenyl-d14 (Surr)

Nitrobenzene-d5 (Surr)

Analysis Batch. 03937	0.11	1.00	1.00				N'Des	Dat
	Spike	LUS	LUS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthylene	1.67	1.271		mg/Kg		76	38 - 120	
Anthracene	1.67	1.310		mg/Kg		79	46 - 124	
Benzo[a]anthracene	1.67	1.361		mg/Kg		82	45 - 120	
Benzo[a]pyrene	1.67	1.371		mg/Kg		82	45 - 120	
Benzo[b]fluoranthene	1.67	1.457		mg/Kg		87	42 - 120	
Benzo[g,h,i]perylene	1.67	1.606		mg/Kg		96	38 - 120	
Benzo[k]fluoranthene	1.67	1.223		mg/Kg		73	42 - 120	
1-Methylnaphthalene	1.67	1.127		mg/Kg		68	32 - 120	
Pyrene	1.67	1.285		mg/Kg		77	43 - 120	
Phenanthrene	1.67	1.253		mg/Kg		75	45 - 120	
Chrysene	1.67	1.332		mg/Kg		80	43 - 120	
Dibenz(a,h)anthracene	1.67	1.637		mg/Kg		98	32 - 128	
Fluoranthene	1.67	1.368		mg/Kg		82	46 - 120	
Fluorene	1.67	1.246		mg/Kg		75	42 - 120	
Indeno[1,2,3-cd]pyrene	1.67	1.561		mg/Kg		94	41 - 121	
Naphthalene	1.67	1.074		mg/Kg		64	32 - 120	
2-Methylnaphthalene	1.67	1.104		mg/Kg		66	28 - 120	
	100							

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	57		29 - 120
Terphenyl-d14 (Surr)	68		13 - 120
Nitrobenzene-d5 (Surr)	48		27 - 120

Lab Sample ID: 490-29694-1 MS Matrix: Solid

							Prep Type: Total/N/
							Prep Batch: 8963
e Sample	Spike	MS	MS				%Rec.
t Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
0	2.14	1.357		mg/Kg	ü	63	25 - 120
D	2.14	1.360		mg/Kg	CI.	64	28 - 125
	le Sample It Qualifier D	e Sample Spike It Qualifier Added D 2.14 D 2.14	le Sample Spike MS It Qualifier Added Result D 2.14 1.357 D 2.14 1.360	le Sample Spike MS MS It Qualifier Added Result Qualifier D 2.14 1.357 D 2.14 1.360	le Sample Spike MS MS It Qualifier Added Result Qualifier Unit D 2.14 1.357 mg/Kg D 2.14 1.360 mg/Kg	It Qualifier Spike MS MS D 2.14 1.357 mg/Kg Image: Mg MS MS	It Qualifier Added Result Qualifier Unit D %Rec D 2.14 1.357 mg/Kg 263 D 2.14 1.360 mg/Kg 264

TestAmerica Nashville

Client Sample ID: 916 Barracuda

Client Sample ID: Method Blank Prep Type: Total/NA Pren Batch: 89634

Dil Fac

1

1 1

1

1 1

1

1

1

Dil Fac

06/28/13 09:53 06/29/13 18:55 1

06/28/13 09:53

Client Sample ID: Lab Control Sample

06/29/13 18:55

Prep Type: Total/NA Prep Batch: 89634

Client Sample ID: 916 Barracuda

Client Sample ID: 916 Barracuda

Prep Type: Total/NA

5

8

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

50

42

Lab Sample ID: 490-29694-1 MS Matrix: Solid

Matrix: Solid									Prep Type: Total/NA
Analysis Batch: 89957									Prep Batch: 89634
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzo[a]anthracene	1.34		2.14	1.626	F	mg/Kg	22	14	23 - 120
Benzo[a]pyrene	0.712		2.14	1.593		mg/Kg	12	41	15 - 128
Benzo[b]fluoranthene	0.903		2.14	1.977		mg/Kg	12	50	12 - 133
Benzo[g,h,i]perylene	0.313		2.14	1.766		mg/Kg	a	68	22 - 120
Benzo[k]fluoranthene	0.821		2.14	1.418		mg/Kg	a	28	28 - 120
1-Methylnaphthalene	ND		2.14	1.223		mg/Kg	α	57	10 - 120
Pyrene	1.63		2.14	1.533	F	mg/Kg	¤	-5	20 - 123
Phenanthrene	ND		2.14	1.322		mg/Kg	a	62	21 - 122
Chrysene	1.98		2.14	1.692	F	mg/Kg	n	-13	20 - 120
Dibenz(a,h)anthracene	0.137		2.14	1.596		mg/Kg	12	68	12 - 128
Fluoranthene	1.50		2.14	1.588	F	mg/Kg	12	4	10 - 143
Fluorene	ND		2.14	1.354		mg/Kg	Ø	63	20 - 120
Indeno[1,2,3-cd]pyrene	0.301		2.14	1.649		mg/Kg	a	63	22 - 121
Naphthalene	ND		2.14	1.155		mg/Kg	¤	54	10 - 120
2-Methylnaphthalene	ND		2.14	1.209		mg/Kg	n	57	13 - 120
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
2-Fluorobiphenyl (Surr)	46		29 - 120						

13 - 120 27 - 120

Lab Sample ID: 490-29694-1 MSD Matrix: Solid

- - ------

Terphenyl-d14 (Surr)

Nitrobenzene-d5 (Surr)

A to be Details 00057									Bron	Ratch:	90634
Analysis Batch: 89957	Sample	Sample	Spike	MSD	MSD				%Rec.	Datch.	RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthylene	ND		2.12	1.318	designed.	mg/Kg	m	62	25 - 120	3	50
Anthracene	ND		2.12	1.215		mg/Kg	12	57	28 - 125	11	49
Benzolalanthracene	1.34		2.12	1.234	F	mg/Kg	37	-5	23 - 120	27	50
Benzolalpyrene	0.712		2.12	1.177		mg/Kg	12	22	15 - 128	30	50
Benzo[b]fluoranthene	0.903		2.12	1.321		mg/Kg	-	20	12 - 133	40	50
Benzo[g,h,i]perylene	0.313		2.12	1.396		mg/Kg	n	51	22 - 120	23	50
Benzo[k]fluoranthene	0.821		2.12	1.115	F	mg/Kg	sa.	14	28 - 120	24	45
1-Methylnaphthalene	ND		2.12	1.153		mg/Kg	ø	54	10 - 120	6	50
Pyrene	1.63		2.12	1.193	F	mg/Kg	12	-21	20 - 123	25	50
Phenanthrene	ND		2.12	1.197		mg/Kg	10	57	21 - 122	10	50
Chrysene	1.98		2.12	1.220	F	mg/Kg	n	-36	20 - 120	32	49
Dibenz(a,h)anthracene	0.137		2.12	1.306		mg/Kg	-	55	12 - 128	20	50
Fluoranthene	1.50		2.12	1.282	F	mg/Kg	C,	-10	10 - 143	21	50
Fluorene	ND		2.12	1.242		mg/Kg	n	59	20 - 120	9	50
Indeno[1,2,3-cd]pyrene	0.301		2.12	1.297		mg/Kg	n	47	22 - 121	24	50
Naphthalene	ND		2.12	1.109		mg/Kg	11	52	10 - 120	4	50
2-Methylnaphthalene	ND		2.12	1.137		mg/Kg	n	54	13 - 120	6	50
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
2-Fluorobiphenyl (Surr)	42		29 - 120								

43 Terphenyl-d14 (Surr)

TestAmerica Nashville

13 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Drop Type: Total/NA
Prep Type. TotalinA
Prep Batch: 89634

Method: Moisture - Percent Moisture

thod: 8270D - Semivo	latile Organi	c Compo	unds (GC/M	S) (Cont	inued)				
ab Sample ID: 490-29694-1 atrix: Solid nalysis Batch: 89957	MSD						Clie	nt Sample ID: 916 Barra Prep Type: Tota Prep Batch: 8	cuda al/NA 9634
	MSD	MSD							
irrogate	%Recovery	Qualifier	Limits						
trobenzene-d5 (Surr)	42		27 - 120						
thod: Moisture - Perce	ent Moisture								
ab Sample ID: 490-29682-D	-21 DU							Client Sample ID: Dupl	icate
atrix: Solid								Prep Type: Tota	al/NA
nalysis Batch: 89426									
	Sample	Sample		DU	DU				RPD
nalyte	Result	Qualifier		Result	Qualifier	Unit	D	RPD	Limit
				82		%		1	20

TestAmerica Nashville

3

QC Association Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing

TestAmerica Job ID: 490-29694-1

GC/MS VOA

Prep Batch: 89359

Project/Site: Laurel Bay	Housing				
GC/MS VOA					
Prep Batch: 89359					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-29694-1	916 Barracuda	Total/NA	Solid	5035	5
490-29694-2	1204 Cardinal	Total/NA	Solid	5035	
Analysis Batch: 89644					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-29694-1	916 Barracuda	Total/NA	Solid	8260B	89359
490-29694-2	1204 Cardinal	Total/NA	Solid	8260B	89359
490-29836-A-4-D MS	Matrix Spike	Total/NA	Solid	8260B	89721
490-29836-A-4-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B	89721
LCS 490-89644/3	Lab Control Sample	Total/NA	Solid	8260B	1.1
LCSD 490-89644/4	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 490-89644/6	Method Blank	Total/NA	Solid	8260B	
Prep Batch: 89721					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-29836-A-4-D MS	Matrix Spike	Total/NA	Solid	5035	1
490-29836-A-4-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
					1

Solid

8270D

GC/MS Semi VOA

Method Blank

Prep Batch: 89634

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-29694-1	916 Barracuda	Total/NA	Solid	3550C	
490-29694-1 MS	916 Barracuda	Total/NA	Solid	3550C	
490-29694-1 MSD	916 Barracuda	Total/NA	Solid	3550C	
490-29694-2	1204 Cardinal	Total/NA	Solid	3550C	
LCS 490-89634/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 490-89634/1-A	Method Blank	Total/NA	Solid	3550C	
Analysis Batch: 89957	7				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-29694-1	916 Barracuda	Total/NA	Solid	8270D	89634
490-29694-1 MS	916 Barracuda	Total/NA	Solid	8270D	89634
490-29694-1 MSD	916 Barracuda	Total/NA	Solid	8270D	89634
490-29694-2	1204 Cardinal	Total/NA	Solid	8270D	89634
LCS 490-89634/2-A	Lab Control Sample	Total/NA	Solid	8270D	89634

General Chemistry

MB 490-89634/1-A

Analysis Batch: 89426

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-29682-D-21 DU	Duplicate	Total/NA	Solid	Moisture	
490-29694-1	916 Barracuda	Total/NA	Solid	Moisture	
490-29694-2	1204 Cardinal	Total/NA	Solid	Moisture	

Total/NA

89634

Lab Sample ID: 490-29694-2

Matrix: Solid

Percent Solids: 93.1

Date Received	: 06/26/13 08:1	5							Percent Solid
Ргер Туре	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			89359	06/27/13 10:49	MLN	TAL NSH	
Total/NA	Analysis	8260B		1	89644	06/28/13 20:55	ККК	TAL NSH	
Total/NA	Prep	3550C			89634	06/28/13 09:53	JLP	TAL NSH	
Total/NA	Analysis	8270D		1	89957	06/29/13 20:53	KJP	TAL NSH	
Total/NA	Analysis	Moisture		1	89426	06/27/13 13:14	RRS	TAL NSH	

Client Sample ID: 1204 Cardinal Date Collected: 06/18/13 15:15 Date Received: 06/26/13 08:15

Ргер Туре	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			89359	06/27/13 10:49	MLN	TAL NSH
Total/NA	Analysis	8260B		1	89644	06/28/13 21:26	ККК	TAL NSH
Total/NA	Prep	3550C			89634	06/28/13 09:53	JLP	TAL NSH
Total/NA	Analysis	8270D		1	89957	06/29/13 22:05	KJP	TAL NSH
Total/NA	Analysis	Moisture		1	89426	06/27/13 13:14	RRS	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL NSH
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL NSH
Moisture	Percent Moisture	EPA	TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TestAmerica Nashville

TestAmerica Job ID: 490-29694-1

Laboratory: TestAmerica Nashville

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
	ACIL		393	10-30-13
A2LA	ISO/IEC 17025		0453.07	12-31-13
laska (UST)	State Program	10	UST-087	07-24-13
vrizona	State Program	9	AZ0473	05-05-14
Arkansas DEQ	State Program	6	88-0737	04-25-14
California	NELAP	9	1168CA	10-31-13
Connecticut	State Program	1	PH-0220	12-31-13
lorida	NELAP	4	E87358	06-30-14
linois	NELAP	5	200010	12-09-13
owa	State Program	7	131	05-01-14
ansas	NELAP	7	E-10229	10-31-13
entucky (UST)	State Program	4	19	09-15-13
ouisiana	NELAP	6	30613	06-30-14
laryland	State Program	3	316	03-31-14
lassachusetts	State Program	1	M-TN032	06-30-14
linnesota	NELAP	5	047-999-345	12-31-13
lississippi	State Program	4	N/A	06-30-13 *
Iontana (UST)	State Program	8	NA	01-01-15
levada	State Program	9	TN00032	07-31-13
lew Hampshire	NELAP	1	2963	10-10-13
lew Jersey	NELAP	2	TN965	06-30-14
lew York	NELAP	2	11342	04-01-14
orth Carolina DENR	State Program	4	387	12-31-13
orth Dakota	State Program	8	R-146	06-30-13 *
hio VAP	State Program	5	CL0033	01-19-14
oklahoma	State Program	6	9412	08-31-13
regon	NELAP	10	TN200001	04-29-14
ennsylvania	NELAP	3	68-00585	06-30-14
Rhode Island	State Program	1	LAO00268	12-30-13
outh Carolina	State Program	4	84009 (001)	02-28-14
outh Carolina	State Program	4	84009 (002)	02-23-14
ennessee	State Program	4	2008	02-23-14
exas	NELAP	6	T104704077-09-TX	08-31-13
JSDA	Federal		S-48469	11-02-13
tah	NELAP	8	TAN	07-30-13 *
rirginia	NELAP	3	460152	06-14-14
Vashington	State Program	10	C789	07-19-13
Vest Virginia DEP	State Program	3	219	02-28-14
Visconsin	State Program	5	998020430	08-31-13
Nyoming (UST)	A2LA	8	453.07	12-31-13

* Expired certification is currently pending renewal and is considered valid.

THE LEADER IN ENVIRONMENTAL TESTING Nashville, TN COOLER RECEIP?	
Cooler Received/Opened On: 6/26/2013 @0815 490-29694 Cha	ain of Custody
1. Tracking #_5670(last 4 digits, FedEx)	
Courier: <u>Fed-Ex</u> IR Gun ID: <u>14740456</u>	
2. Temperature of rep. sample or temp blank when opened: <u>4,8</u> Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozer	TYES NO. NA
4. Were custody seals on outside of cooler?	ESNONA
If yes, how many and where: ZFront/Bock	-
5. Were the seals intact, signed, and dated correctly?	ESNONA
8. Were custody papers inside cooler?	TES NONA
certify that I opened the cooler and answered questions 1-6 (intial)	F
. Were custody seals on containers: YES AD and Intact	YESNO. NA
Were these signed and dated correctly?	YESNO
B. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pap	per Other None
0. Cooling process: (Ce lce-pack lce (direct contact) Dry i	ce Other None
0. Did all containers arrive in good condition (unbroken)?	TES.NONA
1. Were all container labels complete (#. date, signed, pres., etc)?	VES NO NA
	(Instantion and A
2. Did all container labels and tags agree with custody papers?	TES.NONA
 Did all container labels and tags agree with custody papers? Were VOA vials received? 	TESNONA
 2. Did all container labels and tags agree with custody papers? 3a. Were VOA vials received? b. Was there any observable headspace present in any VOA vial? 	(TES)NONA (TES)NONA (YES(10)NA-2
 Did all container labels and tags agree with custody papers? Were VOA vials received? Was there any observable headspace present in any VOA vial? Was there a Trip Blank in this cooler? YESNO A If multiple coolers, seque 	(TES)NONA (TES)NONA (YES(10)NA
 Did all container labels and tags agree with custody papers? Were VOA vials received? Was there any observable headspace present in any VOA vial? Was there a Trip Blank in this cooler? YESNO A If multiple coolers, seque certify that I unloaded the cooler and answered guestions 7-14 (intial) 	TESNONA TESNONA YESMONA-E once #_ <u>NA</u>
 2. Did all container labels and tags agree with custody papers? 3a. Were VOA vials received? b. Was there any observable headspace present in any VOA vial? 4. Was there a Trip Blank in this cooler? YESNO A If multiple coolers, seque certify that I unloaded the cooler and answered questions 7-14 (intial) 5a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level 	TESNONA TESNONA YESMONA-E PICE # <u>NA</u> TESNOMO
 2. Did all container labels and tags agree with custody papers? 3a. Were VOA vials received? b. Was there any observable headspace present in any VOA vial? 4. Was there a Trip Blank in this cooler? YESNO A If multiple coolers, seque certify that I unloaded the cooler and answered guestions 7-14 (intial) 5a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level b. Did the bottle labels indicate that the correct preservatives were used 	TESNONA TESNONA YESMONA-E Price #_ <u>NA</u> TESNONA
 2. Did all container labels and tags agree with custody papers? 3a. Were VOA vials received? b. Was there any observable headspace present in any VOA vial? 4. Was there a Trip Blank in this cooler? YESNO A If multiple coolers, seque certify that I unloaded the cooler and answered questions 7-14 (intial) 5a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level b. Did the bottle labels indicate that the correct preservatives were used 6. Was residual chlorine present? 	TESNONA TESNONA YESMONA YESNONA TESNONA YESNONA YESNONA
 2. Did all container labels and tags agree with custody papers? 3a. Were VOA vials received? b. Was there any observable headspace present in any VOA vial? 4. Was there a Trip Blank in this cooler? YESNO A If multiple coolers, seque certify that I unloaded the cooler and answered questions 7-14 (intial) 5a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH leve b. Did the bottle labels indicate that the correct preservatives were used 6. Was residual chlorine present? 	TESNONA TESNONA YESNONA YESNONA TESNONA YESNONA YESNONA YESNONA
 2. Did all container labels and tags agree with custody papers? 3a. Were VOA vials received? b. Was there any observable headspace present in any VOA vial? 4. Was there a Trip Blank in this cooler? YESNO A If multiple coolers, seque certify that I unloaded the cooler and answered questions 7-14 (intial) 5a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH leve b. Did the bottle labels indicate that the correct preservatives were used 6. Was residual chlorine present? certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial) 7. Were custody papers properly filled out (ink, signed, etc)? 	TESNONA TESNONA YESNONA YESNONA TESNONA YESNONA YESNONA YESNONA
 2. Did all container labels and tags agree with custody papers? 3a. Were VOA vials received? b. Was there any observable headspace present in any VOA vial? 4. Was there a Trip Blank in this cooler? YESNO A If multiple coolers, seque certify that I unloaded the cooler and answered questions 7-14 (intial) 5a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level b. Did the bottle labels indicate that the correct preservatives were used 6. Was residual chlorine present? certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial) 7. Were custody papers properly filled out (ink, signed, etc)? 8. Did you sign the custody papers in the appropriate place? 	Image: Arrow of the second
 Did all container labels and tags agree with custody papers? Were VOA vials received? Was there any observable headspace present in any VOA vial? Was there a Trip Blank in this cooler? YESNO(A) If multiple coolers, seque certify that I unloaded the cooler and answered questions 7-14 (intial) On pres'd bottles, did pH test strips suggest preservation reached the correct pH level b. Did the bottle labels indicate that the correct preservatives were used Was residual chlorine present? certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial) Were custody papers properly filled out (ink, signed, etc)? Did you sign the custody papers in the appropriate place? Were correct containers used for the analysis requested? 	TESNONA TESNONA YESMONA YESNONA TESNONA YESNONA YESNONA YESNONA YESNONA YESNONA
 Did all container labels and tags agree with custody papers? Were VOA vials received? Was there any observable headspace present in any VOA vial? Was there a Trip Blank in this cooler? YESNO A If multiple coolers, seque certify that I unloaded the cooler and answered questions 7-14 (intial) On pres'd bottles, did pH test strips suggest preservation reached the correct pH level b. Did the bottle labels indicate that the correct preservatives were used Was residual chlorine present? Certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial) Were custody papers properly filled out (ink, signed, etc)? Did you sign the custody papers in the appropriate place? Were correct containers used for the analysis requested? Was sufficient amount of sample sent in each container? 	Image: Second state Image: Second sta
 Did all container labels and tags agree with custody papers? Were VOA vials received? Was there any observable headspace present in any VOA vial? Was there a Trip Blank in this cooler? YESNO A If multiple coolers, seque certify that I unloaded the cooler and answered questions 7-14 (intial) On pres'd bottles, did pH test strips suggest preservation reached the correct pH level Did the bottle labels indicate that the correct preservatives were used Was residual chlorine present? were custody papers properly filled out (ink, signed, etc)? Did you sign the custody papers in the appropriate place? Were correct containers used for the analysis requested? Was sufficient amount of sample sent in each container? certify that I entered this project into LIMS and answered questions 17-20 (intial) 	Image: Second state Image: Second sta

1

Login Sample Receipt Checklist

Client: Small Business Group Inc.

Login Number: 29694 List Number: 1 Creator: Ford, Easton

Question	Answer	Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> <td></td>	True		
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True		
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	N/A		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Residual Chlorine Checked.	N/A		

Job Number: 490-29694-1

List Source: TestAmerica Nashville

ATTACHMENT A

1. Generator's US EPA ID No.		Mar	Manifest Doc No.		2. Page 1 of		18			
NON-HAZARDOUS MANIFEST				7.0		1	2.00.21	2.4		
3. Generator's Mailing Address:		Generator's Sit	e Address (If diff	erent than m	ailing):	A. Manife	st Number	I there is	1.0	
MCAS BEAUFORT		1000				W	MNA	01519	9148	
LAUREL BAY HOUSING							B. State	Generator's	ID	
A Constants Bhans	70 0/11									
5. Transporter 1 Company Name	79-0411	6.	US EPA ID	Number		-			-	
10179 Herry 78 CC	-7					C. State T	ransporter's	D		
ladson SC 2	7456					D. Transp	orter's Phone	8431	879-0	1400
7. Transporter 2 Company Name		8.	US EPA ID	Number		E. Chata T				
						E. State I	ransporter's Phone	D		
9. Designated Facility Name and Site	Address	10.	US EPA I	Number		r. mansp	orter s Prione			-
HICKORY HILL LANDFILL						G. State F	acility ID			
2621 LOW COUNTRY DRIVE						H. State F	acility Phone	843-9	987-464	3
RIDGELAND, SC 29936										
the second se				12.00	ntainers	13 Total	14 Unit	1		
11. Description of Waste Materials	-			No.	Туре	Quantity	Wt./Vol.	1. N	Aisc. Commer	nts
a. HEATING OIL TANK FILLED	WITH SAND			1	2.1	919	1	MIC	ATT	1
				/	204	1.11	ION	113	011	
WM Pro	ile # 10265	550		h	V			-		
в.				-			Sec. 2.1			
					-	-	No.	1		
www.profile#				1000	-			1		
WM Profile #								(f*		
d.				1.1						
WM Profile #							1			
J. Additional Descriptions for Mate	rials Listed Abo	ve		K. Dispos	sal Locatio	n				
			1	Cell				Level		
			Rill	Grid		~	7		-	
15. Special Handling Instructions and	Additional Info	mation of	hat	\$ 4)	828	HZ AI	EA16)	1204	Crued	WA
JIZEUCARJ	1117	8860	al all	191	1 RA		1.			
1) 13 I CHIZA	NAT	1 OUR C	DDIA -	TACT / PH	ONE NO :	RRACI	ADA			
		EI	VIERGENCT CON	TACT / FI	ONE NO.					
16. GENERATOR 5 CERTIFICATE:	hed materials a	re not hazardous v	vastes as define	d by 40 C	FR Part 26	1 or any appli	cable state la	w. have bee	n fully an	d
accurately described, classified and p	ackaged and ar	e in proper conditi	on for transport	ation acco	ording to a	oplicable regu	lations.			
Printed Name	11/10	Signa	ture "On behalf	of"	T	1.11	n lova	Month	Day	Year
17 Transporter 1 Acknowledgement	of Possint of M	Astonals	6	yes	Long	WA	acq	18	14	43
Printed Name		Signa	ture //	AL	A		1	Month	Day	Year
PRATT S	hAN	-0	NI	UP	/		V	8	14	13
18. Transporter 2 Acknowledgemen	of Receipt of N	Naterials	1.1	1/						
Printed Name		Signa	iture	- 1				Month	Day	Year
JAMES RAL	Jun	1	Unies	Bal	du			X	15	13
19. Certificate of Final Treatment/Di	sposal	5. C					1. T.			
I certify, on behalf of the above listed	treatment faci	lity, that to the bes	st of my knowle	dge, the al	bove-descr	ibed waste w	as managed	in complian	ce with al	
applicable laws, regulations, permits	and licenses or	the dates listed at	ove.	unred but	his manif-	et .				
20. Facility Owner or Operator: Cert	incation of rece	sign	ous materials co	vered by t	ins manife	1-1		Month	Dav	Year
IOAL Coti	in	Sight	Vor	u	Col.	ald		8	15	13
10101 011	1.0		101		A	~10~		0	12	110

Appendix C Laboratory Analytical Report - Groundwater

Volatile Organic Compounds by GC/MS

Description: BEALB916TW01WG20151130

Laboratory ID: QL02016-003 Matrix: Aqueous

Date Sampled:11/30/2015 1530

Date Received: 12/02/2015											
RunPrep Method15030B	Analytical Method 8260B	Dilution 1	Analysi 12/08/20	s Date Analyst	Prep	Date	Batch 91584				
Parameter		Nur	CAS nber	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
Benzene		71-	43-2	8260B	0.45	U	5.0	0.45	0.21	ug/L	1
Ethylbenzene		100-	41-4	8260B	0.51	U	5.0	0.51	0.21	ug/L	1
Naphthalene		91-	20-3	8260B	0.96	U	5.0	0.96	0.14	ug/L	1
Toluene		108-	88-3	8260B	0.48	U	5.0	0.48	0.24	ug/L	1
Xylenes (total)		1330-	20-7	8260B	0.57	U	5.0	0.57	0.32	ug/L	1
Surrogate	Q %	Run 1 Recovery	Acceptar Limit	ice s							
Bromofluorobenzene		97	75-120)							
1,2-Dichloroethane-d4		98	70-120)							
Toluene-d8		101	85-120)							
Dibromofluoromethane		98	85-115	5							

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeQ = Surrogate failureND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaL = LCS/LCSD failureWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"S = MS/MSD failureS = MS/MSD failure

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Semivolatile Organic Compounds by GC/MS (SIM)

Client: AECOM - Resolution Consultants

Description: BEALB916TW01WG20151130

Laboratory ID: QL02016-003 Matrix: Aqueous

Date Sampled:11/30/2015 1530

Date Received: 12/02/2015

Run Prep Method 1 3520C	Analytical Method Dilu 8270D (SIM) 2	ution Analy 20 12/11/	v sis Date Analyst 2015 1715 DRB1	Prep 12/06/2	Date 015 1619	Batch 91435			
Parameter		CAS Number	Analytical Method	Result	Q	LOQ	LOD	DL	Units Run
Benzo(a)anthracene		56-55-3	8270D (SIM)	0.80	U	4.0	0.80	0.38	ug/L 1
Benzo(b)fluoranthene		205-99-2	8270D (SIM)	0.80	UL	4.0	0.80	0.38	ug/L 1
Benzo(k)fluoranthene		207-08-9	8270D (SIM)	0.80	U	4.0	0.80	0.48	ug/L 1
Chrysene		218-01-9	8270D (SIM)	0.80	U	4.0	0.80	0.42	ug/L 1
Dibenzo(a,h)anthracene		53-70-3	8270D (SIM)	1.6	U	4.0	1.6	0.80	ug/L 1
Surrogate	Run Q % Reco	1 Accepta	ance nits						
2-Methylnaphthalene-d10	81	15-1	39						
Fluoranthene-d10	98	3 23-1	54						

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeQ = Surrogate failureND = Not detected at or above the MDLJ = Estimated result < PQL and ≥ MDL</td>P = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaL = LCS/LCSD failureWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"S = MS/MSD failureS = MS/MSD failure

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Appendix D Regulatory Correspondence

Catherine E. Heigel, Director Promoting and protecting the health of the public and the environment

July 1, 2015

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: IGWA Laurel Bay Underground Storage Tank Assessment Reports for: See attached sheet

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the referenced Underground Storage Tank Assessment Reports for the addresses listed above. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 <u>et seq.</u>, as amended).

The Department has reviewed the referenced assessment reports. The submitted analytical results indicate that petroleum constituents are above established Risk-Based Screening Levels and additional investigation is warranted. Specifically, the Department requests that a groundwater sampling proposal be generated to determine if there has been an impact to groundwater at this site.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at kriegkm@dhec.sc.gov or 803-898-0255.

Sincerely,

that M. They

Kent Krieg Department of Defense Corrective Action Section Bureau of Land and Waste Management South Carolina Department of Health and Environmental Control

Cc: Russell Berry (via email) Craig Ehde (via email) Bryan Beck (via email)

Catherine E. Heigel, Director

Promoting and protecting the health of the public and the environment

Attachment to:

Krieg to Drawdy Subject: IGWA Dated 7/1/2015

Laurel Bay Underground Storage Tank Assessment Reports for: (97 addresses/110 tanks)

118 Banyan	343 Ash Tank 2
126 Banyan	344 Ash Tank 2
127 Banyan	347 Ash Tank 2
130 Banyan Tank 1	378 Aspen Tank 2
141 Laurel Bay	379 Aspen
151 Laurel Bay	382 Aspen Tank 1
224 Cypress	382 Aspen Tank 2
227 Cypress	394 Acorn Tank 2
256 Beech Tank 2	400 Elderberry
257 Beech Tank 1	432 Elderberry
257 Beech Tank 2	436 Elderberry
264 Beech	473 Dogwood Tank 2
265 Beech Tank 2	482 Laurel Bay
265 Beech Tank 3	517 Laurel Bay
275 Birch	586 Aster
277 Birch Tank 1	632 Dahlia
285 Birch	639 Dahlia Tank 2
292 Birch Tank 3	643 Dahlia Tank 1
297 Birch	644 Dahlia Tank 1
301 Ash	644 Dahlia Tank 2
306 Ash	646 Dahlia Tank 1
310 Ash Tank 1	646 Dahlia Tank 2
313 Ash	665 Camellia
315 Ash Tank 2	699 Abelia
316 Ash	744 Blue Bell
319 Ash	745 Blue Bell Tank 1
320 Ash	747 Blue Bell Tank 1
321 Ash	747 Blue Bell Tank 2
329 Ash	747 Blue Bell Tank 3
330 Ash Tank 2	749 Blue Bell Tank 1
331 Ash	749 Blue Bell Tank 2
332 Ash	751 Blue Bell
333 Ash	762 Althea
335 Ash Tank 1	765 Althea Tank 2
335 Ash Tank 2	766 Althea Tank 4
341 Ash	767 Althea Tank 1
342 Ash Tank 1	768 Althea Tank 2
342 Ash Tank 2	768 Althea Tank 3

SOUTH CAROLINA DEPARTMENT OF HEALTH AND ENVIRONMENTAL CONTROL 2600 Bull Street • Columbia, SC 29201 • Phone: (803) 898-3432 • www.scdhec.gov Laurel Bay Underground Storage Tank Assessment Reports for: (98 addresses/110 tanks) cont.

768 Althea Tank 4	1067 Gardenia
769 Althea Tank 1	1077 Heather
769 Althea Tank 2	1081 Heather
775 Althea	1101 Iris Tank 2
819 Azalea	1104 Iris
840 Azalea	1105 Iris Tank 2
878 Cobia	1124 Iris Tank 2
891 Cobia	1142 Iris Tank 2
913 Barracuda	1146 Iris Tank 2
916 Barracuda	1218 Cardinal
923 Albacore	1240 Dove
1004 Bobwhite	1266 Dove
1022 Foxglove	1292 Eagle
1031 Foxglove	1299 Eagle Tank 1
1034 Foxglove Tank 2	1302 Eagle
1061 Gardenia Tank 3	1336 Albatross
1064 Gardenia	1351 Cardinal

Catherine E. Heigel, Director Promoting and protecting the health of the public and the environment

> Division of Waste Management Bureau of Land and Waste Management

June 8, 2016

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: Approval and Concurrence with Draft Final Initial Groundwater Investigation Report-November and December 2015 Laurel Bay Military Housing Area Multiple Properties Dated April 2015

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received groundwater data in the above referenced Groundwater Investigation Report for the attached addresses on May 2, 2016. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

Per the Department's request, groundwater samples were collected from the attached referenced addresses. The Department reviewed the groundwater data and previous investigations and it agrees with the conclusions and recommendations included in the document. To further assess the impact to groundwater, permanent wells should be installed at the 15 stated addresses. For the remaining 80 addresses, there is no indication of contamination on the property and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

LISTS

Laurel Petrus RCRA Federal Facilities Section

Attachment: Specific Property Recommendations

Cc: Russell Berry, EQC Region 8 (via email) Shawn Dolan, Resolution Consultants (via email) Bryan Beck, NAVFAC MIDATLANTIC (via email) Craig Ehde (via email) Attachment to: Petrus to Drawdy

Subject: Draft Final Initial Groundwater Investigation Report-November and December 2015 Specific Property Recommendations Dated June 8, 2016

Draft Final Initial Groundwater Investigation Report for (95 addresses)

Permanent Monitoring Well Investigation recommendation (15 addresses)		
130 Banyan Drive	473 Dogwood Drive	
256 Beech Street	747 Blue Bell Lane	
285 Birch Drive	749 Blue Bell Lane	
292 Birch Drive	775 Althea Street	
330 Ash Street	1034 Foxglove Street	
331 Ash Street	1104 Iris Lane	
335 Ash Street	1124 Iris Lane	
342 Ash Street		-
a de la seconda de		
A CONTRACTOR OF THE OWNER		

No Further Action recommendation (80 addresses)	
118 Banyan Drive	644 Dahlia Drive
126 Banyan Drive	646 Dahlia Drive
127 Banyan Drive	665 Camellia Drive
141 Laurel Bay Blvd	699 Abelia Street
151 Laurel Bay Blvd	744 Blue Bell Lane
224 Cypress Street	745 Blue Bell Lane
227 Cypress Street	751 Blue Bell Lane
257 Beech Street	762 Althea Street
264 Beech Street	765 Althea Street
265 Beech Street	766 Althea Street
275 Birch Drive	767 Althea Street
277 Birch Drive	768 Althea Street
297 Birch Drive	769 Althea Street
301 Ash Street	819 Azalea Drive
306 Ash Street	840 Azalea Drive
310 Ash Street	878 Cobia Drive
313 Ash Street	891 Cobia Drive
315 Ash Street	913 Barracuda Drive
316 Ash Street	916 Barracuda Drive
319 Ash Street	923 Wren Lane
320 Ash Street	1004 Bobwhite Drive
321 Ash Street	1022 Foxglove Street
329 Ash Street	1031 Foxglove Street
332 Ash Street	1061 Gardenia Drive
333 Ash Street	1064 Gardenia Drive
341 Ash Street	1067 Gardenia Drive
347 Ash Street	1077 Heather Street
378 Aspen Street	1081 Heather Street
379 Aspen Street	1101 Iris Lane
382 Aspen Street	1105 Iris Lane
394 Acorn Street	1142 Iris Lane
400 Elderberry Drive	1146 Iris Lane
432 Elderberry Drive	1218 Cardinal Lane
436 Elderberry Drive	1240 Dove Lane
482 Laurel Bay Blvd	1266 Dove Lane
517 Laurel Bay Blvd	1292 Eagle Lane
586 Aster Street	1299 Eagle Lane
632 Dahlia Drive	1302 Eagle Lane
639 Dahlia Drive	1336 Albatross Drive
643 Dahlia Drive	1351 Cardinal Lane

Attachment to: Petrus to Drawdy Subject: Draft Final Initial Groundwater Investigation Report-November and December 2015 Specific Property Recommendations Dated June 8, 2016, Page 2